CARL - Developers Guide

v. 2023-February

Asmus Eilks

April 24, 2023

Introduction

This Document serves as an introduction to working with the CARL App and its
surrounding systems. CARL is designed to allow multi-user studies in augmented re-
ality, including optional Opti-Track tracked objects, across a network.

Some knowledge on part of the reader of how to use the Unity-Engine, Visual Studio
and the Microsoft HoloLens is assumed. This document is split into three parts:
Firstly, a quick guide for experimenters that just want to use the existing system as-is
to conduct experiments with as little work as possible.

Secondly, a more in-depth guide of the systems capabilities and how they can be ex-
tended, for people that want to built on top of the existing system.

Thirdly, an explanation of how the core parts of the application are implemented, and
why these implementation decisions were made, for developers who would like to im-
prove the core system in one way or another.

Contents

(1 Quick Start Guide] 3
(1.1 Required Frameworks| oL 3
[1.1.1 For Optitrack] 3

[1.2° Building and executing the existing application without changes| 3
1.2.1 Synchronizing Position| 4

1.2.2 Adding an optitrack system| L. L L. 4

1.3 Adding additional objects| o o oo 4
[1.3.1 Adding complex Objects| 4

1.4 Adding additional Optitrack Objects| 5

1.5 Dataloggmng. o o oo 5

2 Extending the system| 5
2.1 Network & Device Layout| 5

2.2 Needed Everywhere: Adding additional Messages| 6

2.3 Adding new Client-Types|., 7

2.4 Logging additional Datastreams|. 7

13 Current Implementation) 8
3.1 The Life of a Synchronized Objecd 8
[3.1.1 Special Case: Optitrack tracked objects|, 9

3.2 QR-Detection & Spatial Sync| o oL 10

3.3 Optitrack-Implementation| 10

“Interaction| L L e e e e e e e 10

1 Quick Start Guide

1.1 Required Frameworks

CARL is a unity-project, built with Unity 2021.3.17f1. To avoid potential incompatibili-
ties, I recommend using the same version. Download links for its installation can be found
in the Unity-Archive. In addition, I have used Visual Studio 2019 as code editor and deploy
pipeline, therefore this guide will reference its functionality, it can be installed as part of
the Unity-Installation. Make sure to install the packages for .Net Desktop Development,
Desktop Development with C++, Universal Windows Platform Development and Game
Development with Unity (see fig|l).

Figure 1: VS Installer Packages
For better debugging capa-
,bihties’ you may also want to # H S BN e T
install the 'Windows Mixed
Reality Toolkit.

1.1.1 For Optitrack

To include an optitrack sys-
tem, the Optitrack-Motive
Application is required. I have used Motive 2017.

1.2 Building and executing the existing application without changes

To build the existing application as a
Standalone Application on the Hololens, Figure 2: Unity Build Settings
first open the Unity Project, go to
) Build Settings|, make sure that the target
Platform is Universal Windows Platform
and that the following Properties are set the
same as ﬁg OB Seees
You can also do a Debug Build if you want S8 N ot

to attach a Debugger for any reason, how- N
ever this comes at a significant cost in per-
formance. Then click "Build". 28 Universal Windows Plaforn®
After the build has finished, navigate to

your build folder, and open the LabLin-
kListen.sln in Visual Studio. Connect your
Hololens via USB, make sure it is turned on

rruntime

and unlocked, then select ARM64, Release e ook Comressi T e

(or Debug, if you want to make a Debug [ES—_ “ —
Build) and Device, then click on Device to

build & deploy to that device (see fig [3).

In the Unity Editor, open the "Server

Figure 3: VS Build Settings Scene" in and click Play. The

application will automatically open a Server
Release ~ ARMG4 - P Device - on port 6666, so make sure that one isn’t

https://unity3d.com/get-unity/download/archive
https://docs.microsoft.com/de-de/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05
https://docs.microsoft.com/de-de/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05
https://optitrack.com/support/downloads/motive.html
https://optitrack.com/support/downloads/motive.html

blocked, or change it on the NetworkMan-
ager prefab. On the hololens, start the LabLinkListen application, enter the server’s IP ad-
dress with the virtual Keyboard, and click Connect. If the connection was successful, the
Ul in the Hololens disappears, and a Player should become visible in the Unity Editor.

1.2.1 Synchronizing Position

If you have several Hololenses connected, you will need to synchronize their positions. To
do so, print a QR-Code containing the word "origin" and place it somewhere in your play
area. You can see whether the QR-Code is recognized by the app through the appearance
of a coordinate system around the QR-Code. This QR Code serves as the reference origin-
point for each hololens - the positions of the other players and virtual objects is synchronized
relative to their respective origin points.

1.2.2 Adding an optitrack system

If you want to add real objects tracked by an Optitrack-system, first, set up a Rigidbody in
motive where you want your origin, and ensure that it has Streaming ID 1. Copy the Unity
Project and open the copy in a new Editor Window. For each object you want to track,
add an additional Rigidbody, and set up its streaming ID. Per default, the IDs 31-36 are
used, how to adjust this will be explained in Switch to the "Optitrack Scene" and start
it. Click on "connect", and on "Start Spawning", in the editor window, you can see a simple
debug window informing you about the server connection and the positions of the tracked
objects (again, relative to the origin). You should then be able to see virtual representations
of the tracked objects on all connected HoloLenses.

1.3 Adding additional objects

To add a new object, add the objects model to the |Assets)) FBX Assets| Folder. Then copy
the Synchronized Object Parent in |Assets)) Synchronized Objects| and change the mesh of
the "Synchronized Main Mesh" child object to your new model. Be sure to update the
mesh-colliders mesh as well, Rename the copy as you see fit, and store it as a new pre-
fab. Next, open the Server Scene, find the "Synchronized Object Spawner" and click on
’Reload Synchronized Objects

, your object(s) should now appear in the list of buttons. Then, go
to the Netcode Holder Prefab, and add your new objects to the List of Network Objects
on the NetworkManager Component of the NetcodeHolder. Save your changes, and make
sure to rebuild & redeploy for any HoloLenses used for the project. You should now be able
to spawn your new object across the network and see its movement synchronized between
the clients.

1.3.1 Adding complex Objects

The system supports synchronization of entire object trees using only one script. Simply add
children to an object with a Synchronized Object Parent Script attached, and the position
& rotation of all children will be synchronized. This is useful if objects need to preserve
references to one another.

1.4 Adding additional Optitrack Objects

To add a new object to be tracked by the Optitrack system, first add the mesh as you would
any other synchronized object (see . Then, set up a Rigidbody for the object in motive.
Go to the Optitrack scene and find the "Client Optitrack" Gameobject. Add your new
GameObject to the "Tracked object spawnables list", and make sure that the "Key" property
in that list is set to the same streaming ID the object’s Rigidbody has in motive.

Note: The streaming ID 1 is permanently reserved for the origin object, and only positive
integers can be valid streaming IDs.

1.5 Data Logging

The Server and the Optitrack client automatically open up an LSL-Stream on startup, which
can be recorded with the LSL-LabRecorder. In this stream, the Server writes any Log-
Messages it generates, and the Optitrack client writes the positions of any tracked objects 5
times per second.

Hololens-Clients need an LSL-Bridge to write to the LabRecorder. They connect (by de-
fault) to the same IP-Address as the Server, using the Ports 8877 & 8878 respectively. This
can be configured on the Server, by altering the Addresses/Ports on the MetaDataHolder-
Object. Clients push the poses of all Hand-Joints and their head 5 times per second, as well
as any additional Events (Grabbing&Releasing an Object, Connecting/Disconnecting from
the Server, Pings).

2 Extending the system

2.1 Network & Device Layout

CARL uses a strict Server-Client archi-

tecture, where one Server hosts and syn- Figure 4: Network Structure
chronizes many clients. It was built
on top of the Transport Layer of the C——

Synchronizes data to and from
clients

"Netcode for GameObjects" pre-release in
early 2022. The system uses the exist-
ing Network Manager to establish con-
nections between clients and server, but
does all other Network-Communication Optitack Ol ol Edio)
via Named Messages, to allow for a high

amount of control what exactly is sent /ﬁ‘w@
when. Its important to note that clients can- Brouids acking datsfor cbjocs

not directly communicate to each other, in-

stead messages have to be sent to the server

which then forwards it to other clients.

The Server is intended to run inside the Unity Editor, as it has no in-Scene UI. Extensions
to the HoloLens-Clients may need to be compiled into UWP or IL2ZCPP to run, extension
to an Optitrack-Client are compiled to a desktop windows machine, and should therefore
not have any speciﬁc requirements.

Netcode for Unity

Hololens Client (Unity-App)
Can manipulate digital objects
Displays digital twins of real objects
Provide hand& head tracking data
an send pings depending on varian|

Optitrack Client (Unity-Editor)

https://github.com/labstreaminglayer/App-LabRecorder
https://gitlab.csl.uni-bremen.de/fkroll/LSLHoloBridge
https://docs-multiplayer.unity3d.com/netcode/current/api/Unity.Netcode.NetworkManager/index.html
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/custom-messages/index.html#named-messages

2.2 Needed Everywhere: Adding additional Messages

Adding almost anything to CARL will require new message Senders/Handlers. Custom
Messages are packages of arbitrary data that are identified by a string, and sent between
a server and a client. These are used to transfer data and commands between server and
clients. To enable different functionalities, I've used a few patterns across the project, and
encourage further additions to the project to follow the same patterns, as this keeps the code
readable and understandable.

On its most basic, a message is sent using the CustomMessagingManager.SendNamedMessage
function. This function requires three parameters:

1. string | messageName: The message Name by which this message is identified. This
should be a public const string, whose variable name ends in Key, and is defined in the
same class that sends and/or handles this message.

2. ulong | clientID: The ID of the receiving client. If the message is Server-bound, use
NetworkManager.ServerClientld.

3. FastBufferWriter | messageStream: A stream containing the messages payload. This
should be created right before sending the message, in a using-statement, so its disposed
immediately afterwards. To create the FastBuffer Writer, simply use its constructor. Use
a starting size of 1, a temporary allocator, and a max size equal or larger to the size of the
data you want to send. FastBuffer Writers can take any primitive data, which is written
into them using the WriteValueSafe function. Serializing objects to primitive data will
have to be done manually before sending the message.

In total, a message being sent might look like this:

public class SampleClass{
public const string SampleMessageKey = "SampleMessage";
public void SendSampleMessage(string samplePayload){
using FastBufferWriter writer = new (1,
Unity.Collections.Allocator.Temp, 64000){
writer.WriteValueSafe (samplePayload);
NetworkManager.Singleton.CustomMessagingManager.SendNamedMessage
(SampleMessageKey, NetworkManager.ServerClientId, writer);

}

Listing 1: Sample Message Sending

The handler for the message must take exactly two parameters: a ulong, to which the
senders ID is written, and a FastBufferReader which contains the payload. A function with
this signature can then be registered to the CustomMessagingManager using the Register-
NamedMessageHandler function. This should be done a coroutine, using a bool to make
sure the handler is not registered more than once. The reason this cannot be reliably done
in Start or Awake is that the CustomMessagingManager object is only created when the
Server or Client is started, which is often not the case at object creation. The interface
IMessageHandler provides appropriate Signatures.

public class SampleHandlerClass : MonoBehaviour, IMessageHandler{
bool msgHandlerSet;
public bool MsgHandlerSet { get => msgHandlerSet; }

public IEnumerator RegisterMsgHandlers ()

{
while (!MsgHandlerSet)
{
if (networkManager.CustomMessagingManager != null)
{
networkManager.CustomMessagingManager.RegisterNamedMessageHandler
(SampleClass.SampleMessageKey, SampleMessageHandler);
msgHandlerSet = true;
b
yield return null;
X
X
public void SampleMessageHandler (ulong senderID, FastBufferReader
payload){
payload.ReadValueSafe (out string message);
Debug.Log (message) ;
}
X

Listing 2: Sample Message Handling

To share a message to all other clients, I've usually used a foreach-loop iterating over the
clientIDs stored in NetworkManager.ConnectedClientslds, and send the message to each
of them aside the sender. If you want to send a message to all clients, including the Sender,
you can also use the SendNamedMessage ToAll function.

2.3 Adding new Client-Types

To add a new type of client, create a new Scene, add a NetcodeHolder, Synchronized
Object Spawner and Device Identifier to it. The Netcode Holder contains all functionality
needed to connect to the server, the Synchronized Object Spawner handles spawning and
synchronization of objects, and the Device Identifier provides the Server with information
about this client and receives info about other clients. Extend the CustomDevice Type enum
found in the MetaDataHolder class. Now you can implement your clients functionality
inside the project.

2.4 Logging additional Datastreams

Adding additional data or datastreams may be necessary for various experiments. If the data
is collected on a Desktop-Windows-Machine, it can easily be exposed to LSL by creat-
ing a new StreamOoutlet object, and pushing the data using streamOut.pushSample(). The
LSL_Server script can be references a sample implementation for this functionality. It be-
comes a little more complicated if a new data stream needs to be introduced to the HoloLens-
Devices, as they require a bridge-script to reach LSL. On the Unity side, introduce a new
ChannelKey to the BridgeConnectionManager script. You can send arbitrary data to that
stream using the Send() function. However, for the bridge to pass on the data, the stream
needs to be also registered in the holo_lsl_start_experiment_server.py python script. There,
create a new StreamlInfo object, analog to the existing Event & HL Tracking Outlets. It
is important the stream has the same name as the ChannelKey, and is registered with that
Key in the outlets-dictionary of the bridge-script.

UNITY
public class BridgeConnectionManager : MonoBehaviour{
[...]
public const string SampleChannelKey = "new_sample_stream";
[...]
X
public class SampleStreamSender : MonoBehaviour {
public void Update (){
BridgeConnectionManager.Instance. Send(
"This is a sample message",
BridgeConnectionManager.SampleChannelKey)

}

PYTHON

[...]

Sample_Stream_outlet = StreamInfo(name=’new_sample_stream?’,
type=’sample_stream’,
channel_count=1,
nominal_srate=1sl.IRREGULAR_RATE,
channel_format=1sl.cf_string,
source_id=’sample_Data’)

[...]

outlets = {

new_sample_stream: StreamOutlet (Sample_Stream_Outlet, chunk_size=1,
max_buffered=3600) [...]

Listing 3: Sample LSL-Bridge Stream implementation

3 Current Implementation

3.1 The Life of a Synchronized Object

All synchronized objects have to be spawned at runtime by the server. Right after a synchro-
nized object is spawned, it is given an Owner. This is always the client that called the spawn
command. Only the owner can modify an object. The object is also given a unique ID by
which it can be identified across the network. Finally, the object is also assigned a track-
ingState. This marks objects tracked by a constant tracking source, such as the optitrack
system, so that their position can not be overwritten by other clients/sources. All of these
changes/assignments are then propagated across the network. Now our object is accessible
by clients. Every update, the object checks if it has been moved or rotated beyond a certain
threshold. If it was, it notifies the SynchronizedObjectManager, which propagates the new
pose across the network. That way, objects are always kept in sync. If the object is controlled
by a single, consistent tracking source, this is all the synchronization needed. However, if
multiple users can interact with the object at any time, ownership needs to be transferred
accordingly, so whoever is currently manipulating the object propagates their changes to
the other users. As currently the only clients that can do this are Hololens-Clients, this is
handled by the ObjectManipulator, which calls GetOwnership when manipulation begins.
Other potentially manipulating clients or client-types need to do the same when they start
manipulating the object.

3.1.1 Special Case: Optitrack tracked objects

With the optitrack system, as well as presumably most other tracking systems, another prob-
lem arises: The Optitrack client gets an ID from Motive, which corresponds to an object to
be tracked. It then sends a spawn command to the server, and the object is spawned. How-
ever, the optitrack client can not simply assign the ID from Motive to the newly spawned
object, as it does not have a reference, and it is not guaranteed that the next object spawned is
the result of the Optitrack Clients spawn command, since other clients may also be spawn-
ing objects at the same time. To solve this issue, the Tracking ID is sent with the Spawn
command, and the Server sends out an update containing the Network-ID of the spawned
object and the tracking-ID after spawning the object. This way, Optitrack clients can link
up the object with their ID. This tracking-ID assignment is also propagated to other clients,
which then locally block interaction with the tracked object.

Figure 5: Optitrack Spawning & Sync

Optitrack Client

Other Clients

|
|
|
|
Found new SpawnObjectReguest Instantiate object :
|
|
|
|

object (ObjectName, TrackingState, prefab &
TrackinglD) assign NetworklD

11

Replicate object SpawnObject | SpawnObject Replicate object
locally (ObjectName, NetworkID) I (ObjectName, NetworkID) locally

Update object SetTrackingState SetTrackingState Update object
state (NetworklD, TrackingState, {NetworklD, TrackingState, state
TrackinglD) TrackinglD)

Object moved UpdatePosition Update Object
locally {NetworklD, Position) position

D

[UpdatePosition Update object
| (NetworklD, Position) position

|

| |

I |

Update Object State
Loock for Object '
with Network 1D | Wait 1 Frame

Not Found

Found

Update Object
Variables

Assume
TrackingStateUpdate
arrived before Spawn

3.2 QR-Detection & Spatial Sync

For two users to interact in the same relative space, as well as synchronizing the Opti-
track space to the HoloLens, some sort of origin in real space is needed. As mentioned in
ive used QR codes for that purpose. All objects that are supposed to be placed in real
space, become attached to the Qr-Detected-Origin object on the HoloLens-Clients, and
the attached OriginSeeker script then positions the Origin-Object to the location of the last
recognized QR-Code that contains the word "Origin". To detect this QR code, Microsofts
MixedReality.QR library is used, following this guide by Joost van Schaik.

3.3 Optitrack-Implementation

The optitrack implementation uses the optitrack-unity plugin to get data from the Mo-
tive Software. The OptitrackObjectSpawner script regularly polls the OptitrackStream-
ingClient about the data it received, spawning or updating objects if an ID of a motive
object matches the ID of an object defined in the TrackedObjectSpawnables list. Details
about how objects are spawned and linked to the motive ID are described in Objects
can be given a rotational & positional offset in the TrackedObjectSpawnables list, allow-
ing a developer to adjust a consistently incorrectly positioned/rotated object in the editor.
However, the same can be done in Motive, using more intuitive arrow/sphere gizmos, so i
recommend adjusting objects in Motive to fix consistent inaccuracies.

3.4 AR-Interaction

Interaction with purely virtual objects is implemented using the ObjectManipulator and
NearlnteractionGrabbable scripts from the MRTK without any noteworthy changes. The
only addition is the InteractionHighlighter script, which colors an object red while its being
held. This is done by registering the functions to the Object Manipulators Manipulation-
Started/Ended events, and further functionality could easily be added the same way.

10

https://localjoost.github.io/Upgrading-reading-and-positioning-QR-codes-with-HoloLens-2-to-Unity-2020-+-OpenXR-plugin/
https://docs.optitrack.com/v/v2.3/plugins/optitrack-unity-plugin
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-building-blocks/object-manipulator?view=mrtkunity-2022-05
https://learn.microsoft.com/en-us/dotnet/api/microsoft.mixedreality.toolkit.input.nearinteractiongrabbable?preserve-view=true&view=mixed-reality-toolkit-unity-2020-dotnet-2.8.0

	Quick Start Guide
	Required Frameworks
	For Optitrack

	Building and executing the existing application without changes
	Synchronizing Position
	Adding an optitrack system

	Adding additional objects
	Adding complex Objects

	Adding additional Optitrack Objects
	Data Logging

	Extending the system
	Network & Device Layout
	Needed Everywhere: Adding additional Messages
	Adding new Client-Types
	Logging additional Datastreams

	Current Implementation
	The Life of a Synchronized Object
	Special Case: Optitrack tracked objects

	QR-Detection & Spatial Sync
	Optitrack-Implementation
	AR-Interaction

